3.619 \(\int \frac{1}{(c x)^{5/2} \sqrt{a+b x^2}} \, dx\)

Optimal. Leaf size=129 \[ -\frac{b^{3/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} \text{EllipticF}\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right ),\frac{1}{2}\right )}{3 a^{5/4} c^{5/2} \sqrt{a+b x^2}}-\frac{2 \sqrt{a+b x^2}}{3 a c (c x)^{3/2}} \]

[Out]

(-2*Sqrt[a + b*x^2])/(3*a*c*(c*x)^(3/2)) - (b^(3/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*
x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(3*a^(5/4)*c^(5/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0730192, antiderivative size = 129, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {325, 329, 220} \[ -\frac{b^{3/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{3 a^{5/4} c^{5/2} \sqrt{a+b x^2}}-\frac{2 \sqrt{a+b x^2}}{3 a c (c x)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[1/((c*x)^(5/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*Sqrt[a + b*x^2])/(3*a*c*(c*x)^(3/2)) - (b^(3/4)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*
x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(3*a^(5/4)*c^(5/2)*Sqrt[a + b*x^2])

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rubi steps

\begin{align*} \int \frac{1}{(c x)^{5/2} \sqrt{a+b x^2}} \, dx &=-\frac{2 \sqrt{a+b x^2}}{3 a c (c x)^{3/2}}-\frac{b \int \frac{1}{\sqrt{c x} \sqrt{a+b x^2}} \, dx}{3 a c^2}\\ &=-\frac{2 \sqrt{a+b x^2}}{3 a c (c x)^{3/2}}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{1}{\sqrt{a+\frac{b x^4}{c^2}}} \, dx,x,\sqrt{c x}\right )}{3 a c^3}\\ &=-\frac{2 \sqrt{a+b x^2}}{3 a c (c x)^{3/2}}-\frac{b^{3/4} \left (\sqrt{a}+\sqrt{b} x\right ) \sqrt{\frac{a+b x^2}{\left (\sqrt{a}+\sqrt{b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac{\sqrt [4]{b} \sqrt{c x}}{\sqrt [4]{a} \sqrt{c}}\right )|\frac{1}{2}\right )}{3 a^{5/4} c^{5/2} \sqrt{a+b x^2}}\\ \end{align*}

Mathematica [C]  time = 0.0126789, size = 56, normalized size = 0.43 \[ -\frac{2 x \sqrt{\frac{b x^2}{a}+1} \, _2F_1\left (-\frac{3}{4},\frac{1}{2};\frac{1}{4};-\frac{b x^2}{a}\right )}{3 (c x)^{5/2} \sqrt{a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((c*x)^(5/2)*Sqrt[a + b*x^2]),x]

[Out]

(-2*x*Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[-3/4, 1/2, 1/4, -((b*x^2)/a)])/(3*(c*x)^(5/2)*Sqrt[a + b*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.013, size = 123, normalized size = 1. \begin{align*} -{\frac{1}{3\,ax{c}^{2}} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{2}\sqrt{{ \left ( -bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}}\sqrt{-{bx{\frac{1}{\sqrt{-ab}}}}}{\it EllipticF} \left ( \sqrt{{ \left ( bx+\sqrt{-ab} \right ){\frac{1}{\sqrt{-ab}}}}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{-ab}x+2\,b{x}^{2}+2\,a \right ){\frac{1}{\sqrt{cx}}}{\frac{1}{\sqrt{b{x}^{2}+a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*x)^(5/2)/(b*x^2+a)^(1/2),x)

[Out]

-1/3/(b*x^2+a)^(1/2)/x*(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/
2)*(-x*b/(-a*b)^(1/2))^(1/2)*EllipticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*(-a*b)^(1/2)*x+2*b
*x^2+2*a)/a/c^2/(c*x)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{2} + a} \left (c x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(b*x^2 + a)*(c*x)^(5/2)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b x^{2} + a} \sqrt{c x}}{b c^{3} x^{5} + a c^{3} x^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(c*x)/(b*c^3*x^5 + a*c^3*x^3), x)

________________________________________________________________________________________

Sympy [C]  time = 8.11065, size = 48, normalized size = 0.37 \begin{align*} \frac{\Gamma \left (- \frac{3}{4}\right ){{}_{2}F_{1}\left (\begin{matrix} - \frac{3}{4}, \frac{1}{2} \\ \frac{1}{4} \end{matrix}\middle |{\frac{b x^{2} e^{i \pi }}{a}} \right )}}{2 \sqrt{a} c^{\frac{5}{2}} x^{\frac{3}{2}} \Gamma \left (\frac{1}{4}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)**(5/2)/(b*x**2+a)**(1/2),x)

[Out]

gamma(-3/4)*hyper((-3/4, 1/2), (1/4,), b*x**2*exp_polar(I*pi)/a)/(2*sqrt(a)*c**(5/2)*x**(3/2)*gamma(1/4))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{b x^{2} + a} \left (c x\right )^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*x)^(5/2)/(b*x^2+a)^(1/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(b*x^2 + a)*(c*x)^(5/2)), x)